Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Nucl Med Biol ; 132-133: 108906, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38518400

RESUMO

BACKGROUND: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 µM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.

2.
Neuron ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447578

RESUMO

How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.

3.
Commun Biol ; 7(1): 119, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263256

RESUMO

Stimulus-induced conflicts in decision-making tasks produce both behavioral and neuronal congruency effects. However, how and when conflicts are detected and resolved at the neuronal level remains largely unclear. To address these issues, we recorded from single neurons in the frontal eye fields of two macaques performing a conflict task. Although the temporal dynamics of the neuronal congruency effects are independent of the specific task rules, they are substantially different in target- and distractor-encoding neurons. Conflicts were detected ~100 ms after the conflict-inducing cue (20-30 ms after the visual response), which is much faster than predicted based on human EEG results. This suggests that conflict detection relies on a fast mechanism in frontal eye fields. Resolving the conflict at the neuronal level, however, requires between <400 ms to ~1000 ms, and shows profound interindividual differences and depends on task rules, indicating that it is a more complex and top-down driven process. Our findings illuminate the neuronal mechanisms underlying decision-making when a conflict is present, a crucial cognitive process playing a role in basic survival and high-level cognitive functions.


Assuntos
Cognição , Lobo Frontal , Humanos , Animais , Macaca , Neurônios , Registros
4.
Curr Res Neurobiol ; 4: 100079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397811

RESUMO

As science and technology evolve, there is an increasing need for promotion of international scientific exchange. Collaborations, while offering substantial opportunities for scientists and benefit to society, also present challenges for those working with animal models, such as non-human primates (NHPs). Diversity in regulation of animal research is sometimes mistaken for the absence of common international welfare standards. Here, the ethical and regulatory protocols for 13 countries that have guidelines in place for biomedical research involving NHPs were assessed with a focus on neuroscience. Review of the variability and similarity in trans-national NHP welfare regulations extended to countries in Asia, Europe and North America. A tabulated resource was established to advance solution-oriented discussions and scientific collaborations across borders. Our aim is to better inform the public and other stakeholders. Through cooperative efforts to identify and analyze information with reference to evidence-based discussion, the proposed key ingredients may help to shape and support a more informed, open framework. This framework and resource can be expanded further for biomedical research in other countries.

5.
Cell Rep ; 42(4): 112384, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043349

RESUMO

Which neuronal signal(s) predict reaction times when subjects respond to a target at covertly attended locations? Although recent studies showed that spike rates are not predictive, it remains a highly contested question. Therefore, we record single-unit activity from frontal eye field (FEF) neurons while macaques are performing a covert spatial attention task. We find that the attentional modulation of spike rates of FEF neurons is strongly correlated with behavioral reaction times. Moreover, this correlation already emerges 1 s before target dimming, which triggers the behavioral responses. This prediction of reaction times by spike rates is found in neurons showing attention-dependent enhanced and suppressed activity for targets and distractors, respectively, yet in varying degrees across subjects. Thus, spike rates of FEF neurons can predict reaction times persistently and well before the operant behavior during selective attention tasks. Such long prediction windows will be useful for developing spike-based brain-machine interfaces.


Assuntos
Atenção , Campos Visuais , Animais , Humanos , Tempo de Reação/fisiologia , Estimulação Luminosa , Macaca mulatta , Atenção/fisiologia , Lobo Frontal/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos
6.
Cereb Cortex ; 33(3): 622-633, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253853

RESUMO

The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Testes Neuropsicológicos
7.
J Med Chem ; 66(1): 538-552, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516997

RESUMO

Multimodal imaging provides rich biological information, which can be exploited to study drug activity, disease associated phenotypes, and pharmacological responses. Here we show discovery and validation of a new probe targeting the endocannabinoid α/ß-hydrolase domain 6 (ABHD6) enzyme by utilizing positron emission tomography (PET) and matrix-assisted laser desorption/ionization (MALDI) imaging. [18F]JZP-MA-11 as the first PET ligand for in vivo imaging of the ABHD6 is reported and specific uptake in ABHD6-rich peripheral tissues and major brain regions was demonstrated using PET. A proof-of-concept study in nonhuman primate confirmed brain uptake. In vivo pharmacological response upon ABHD6 inhibition was observed by MALDI imaging. These synergistic imaging efforts used to identify biological information cannot be obtained by a single imaging modality and hold promise for improving the understanding of ABHD6-mediated endocannabinoid metabolism in peripheral and central nervous system disorders.


Assuntos
Endocanabinoides , Hidrolases , Animais , Endocanabinoides/metabolismo , Hidrolases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Monoacilglicerol Lipases , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons
8.
Nat Commun ; 13(1): 4702, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948534

RESUMO

The interplay between task-relevant and task-irrelevant information may induce conflicts that impair behavioral performance, a.k.a. behavioral congruency effects. The neuronal mechanisms underlying behavioral congruency effects, however, are poorly understood. We recorded single unit activity in monkey prefrontal cortex using a task-switching paradigm and discovered a neuronal congruency effect (NCE) that is carried by target and distractor neurons which process target and distractor-related information, respectively. The former neurons provide more signal, the latter less noise in congruent compared to incongruent conditions, resulting in a better target representation. Such NCE is dominated by the level of congruency, and is not determined by the task rules the subjects used, their reaction times (RT), the length of the delay period, nor the response levels of the neurons. We propose that this NCE can explain behavioral congruency effects in general, as well as previous fMRI and EEG results in various conflict paradigms.


Assuntos
Macaca , Córtex Pré-Frontal , Animais , Humanos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
9.
J Cogn Neurosci ; 34(7): 1259-1273, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35468206

RESUMO

Previous studies demonstrated that pairing a visual stimulus and electrical micro-stimulation of the ventral tegmental area (VTA-EM) for multiple days is sufficient to induce visual cortical plasticity and changes perception. However, a brief epoch of VTA-EM-stimulus pairing within a single day has been shown to result in a behavioral preference for the paired stimulus. Here, we investigated whether a brief single-day session of VTA-EM-stimulus pairings is sufficient to induce changes in visual cortical responses. We examined macaque posterior inferior temporal (PIT) cortex because previous studies demonstrated response changes after VTA-EM stimulus pairing in that area. Multi-unit recordings in PIT were interleaved with VTA-EM-stimulus pairing epochs. During the short VTA-EM-stimulus pairing epochs (60 pairings), one image (fractal) was paired with VTA-EM (STIM) whereas another, unpaired fractal was presented as control. Two other fractals (dummies) were presented only during the recordings. The difference in response between the STIM and control fractals already increased after the first VTA-EM-stimulus pairing epoch, reflecting a relative increase of the response to the STIM fractal. However, the response to the STIM fractal did not increase further with more VTA-EM-stimulus pairing epochs. The relative increase in firing rate for the paired fractal was present early in the response, in line with a local/ bottom-up origin. These effects were absent when comparing the responses to the dummies pre- and post-VTA-EM. This study shows that pairing a visual image and VTA-EM in a brief single-day session is sufficient to increase the response for the paired image in macaque PIT.


Assuntos
Área Tegmentar Ventral , Córtex Visual , Estimulação Elétrica , Área Tegmentar Ventral/fisiologia
10.
Prog Neurobiol ; 211: 102230, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101543

RESUMO

Primates are endowed with a dedicated cortical network for processing visual scene information, which is critical for navigation and object retrieval. Previous studies showed that this scene network encompasses three to maximally five cortical regions in humans and monkeys. Using submillimeter resolution fMRI (0.22 mm3 voxels), and two entirely different but carefully controlled stimulus sets, we demonstrate a robust, fine-grained, yet three-fold more extensive scene-processing network in macaques compared to previous studies. The core network, selective for both familiar and unfamiliar scenes, encompasses eleven patches distributed over all cerebral lobes and is surprisingly elaborated in frontal cortex. Five additional non-core scene-selective patches show scene selectivity, but only for places familiar to the monkeys. Notably, resting-state fMRI revealed that the frontal and temporo-parietal scene-selective patches form an intrinsically-connected network, largely segregated from other category-selective networks. Moreover, the strength of the functional connectivity across nodes of the network is a predictor of functional scene responses of nodes belonging to this network. Hence, this scene processing network is functionally-relevant. In summary, the scene-processing system is considerably more complex than previously documented, consisting of functionally interconnected patches throughout all cortical lobes.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Córtex Cerebral/fisiologia , Haplorrinos , Humanos
11.
J Cereb Blood Flow Metab ; 42(6): 1007-1019, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34894821

RESUMO

We report a novel forward-model implementation of the full reference tissue model (fFTRM) that addresses the fast-exchange approximation employed by the simplified reference tissue model (SRTM) by incorporating a non-zero dissociation time constant from the specifically bound compartment. The forward computational approach avoided errors associated with noisy and nonorthogonal basis functions using an inverse linear model. Compared to analysis by a multilinear single-compartment reference tissue model (MRTM), fFTRM provided improved accuracy for estimation of binding potentials at early times in the scan, with no worse reproducibility across sessions. To test the model's ability to identify small focal changes in binding potential using a within-scan challenge, we employed a nonhuman primate model of focal dopamine release elicited by deep brain microstimulation remote to ventral striatum (VST) during imaging by simultaneous PET and fMRI. The new model reported an unambiguously lateralized response in VST consistent with fMRI, whereas the MRTM-derived response was not lateralized and was consistent with simulations of model bias. The proposed model enabled better accuracy in PET [11C]raclopride displacement studies and may also facilitate challenges sooner after injection, thereby recovering some sensitivity lost to radioactive decay of the PET tracer.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Racloprida/metabolismo , Cintilografia , Compostos Radiofarmacêuticos/metabolismo , Reprodutibilidade dos Testes
12.
J Neurosci ; 41(45): 9340-9349, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34732521

RESUMO

The exquisite capacity of primates to detect and recognize faces is crucial for social interactions. Although disentangling the neural basis of human face recognition remains a key goal in neuroscience, direct evidence at the single-neuron level is limited. We recorded from face-selective neurons in human visual cortex in a region characterized by functional magnetic resonance imaging (fMRI) activations for faces compared with objects. The majority of visually responsive neurons in this fMRI activation showed strong selectivity at short latencies for faces compared with objects. Feature-scrambled faces and face-like objects could also drive these neurons, suggesting that this region is not tightly tuned to the visual attributes that typically define whole human faces. These single-cell recordings within the human face processing system provide vital experimental evidence linking previous imaging studies in humans and invasive studies in animal models.SIGNIFICANCE STATEMENT We present the first recordings of face-selective neurons in or near an fMRI-defined patch in human visual cortex. Our unbiased multielectrode array recordings (i.e., no selection of neurons based on a search strategy) confirmed the validity of the BOLD contrast (faces-objects) in humans, a finding with implications for all human imaging studies. By presenting faces, feature-scrambled faces, and face-pareidolia (perceiving faces in inanimate objects) stimuli, we demonstrate that neurons at this level of the visual hierarchy are broadly tuned to the features of a face, independent of spatial configuration and low-level visual attributes.


Assuntos
Mapeamento Encefálico/métodos , Reconhecimento Facial/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Adulto , Eletrodos Implantados , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos
13.
Elife ; 102021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730515

RESUMO

Population receptive field (pRF) modeling is a popular fMRI method to map the retinotopic organization of the human brain. While fMRI-based pRF maps are qualitatively similar to invasively recorded single-cell receptive fields in animals, it remains unclear what neuronal signal they represent. We addressed this question in awake nonhuman primates comparing whole-brain fMRI and large-scale neurophysiological recordings in areas V1 and V4 of the visual cortex. We examined the fits of several pRF models based on the fMRI blood-oxygen-level-dependent (BOLD) signal, multi-unit spiking activity (MUA), and local field potential (LFP) power in different frequency bands. We found that pRFs derived from BOLD-fMRI were most similar to MUA-pRFs in V1 and V4, while pRFs based on LFP gamma power also gave a good approximation. fMRI-based pRFs thus reliably reflect neuronal receptive field properties in the primate brain. In addition to our results in V1 and V4, the whole-brain fMRI measurements revealed retinotopic tuning in many other cortical and subcortical areas with a consistent increase in pRF size with increasing eccentricity, as well as a retinotopically specific deactivation of default mode network nodes similar to previous observations in humans.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Macaca mulatta , Masculino , Neurônios/fisiologia , Oxigênio/sangue , Fluxo Sanguíneo Regional
14.
Cell Rep ; 37(6): 109998, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758325

RESUMO

fMRI studies have shown that pairing a task-irrelevant visual feature with electrical micro-stimulation of the ventral tegmental area (VTA-EM) is sufficient to increase the sensory cortical representation of the paired feature and to improve perceptual performance. However, since fMRI provides an indirect measure of neural activity, the neural response changes underlying the fMRI activations are unknown. Here, we pair a task-irrelevant grating orientation with VTA-EM while attention is directed to a difficult orthogonal task. We examine the changes in neural response properties in macaques by recording spiking activity in the posterior inferior temporal cortex, the locus of fMRI-defined plasticity in previous studies. We observe a relative increase in mean spike rate and preference for the VTA-EM paired orientation compared to an unpaired orientation, which is unrelated to attention. These results demonstrate that VTA-EM-stimulus pairing is sufficient to induce sensory cortical plasticity at the spiking level in nonhuman primates.


Assuntos
Percepção de Cores/fisiologia , Discriminação Psicológica , Plasticidade Neuronal , Neurônios/fisiologia , Estimulação Luminosa , Área Tegmentar Ventral/fisiologia , Córtex Visual/fisiologia , Animais , Comportamento Animal , Macaca , Masculino
15.
Brain Struct Funct ; 226(9): 2869-2880, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417886

RESUMO

The visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306-2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.


Assuntos
Bainha de Mielina , Neocórtex , Vias Visuais , Animais , Mapeamento Encefálico , Macaca , Vias Visuais/diagnóstico por imagem
16.
Neuroimage ; 237: 118203, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048898

RESUMO

Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Processos Mentais , Estudos Multicêntricos como Assunto , Neurociências , Primatas , Córtex Sensório-Motor , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Processos Mentais/fisiologia , Estudos Multicêntricos como Assunto/métodos , Estudos Multicêntricos como Assunto/normas , Neurociências/métodos , Neurociências/normas , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiologia
17.
Neuroimage ; 235: 118017, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794355

RESUMO

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem/métodos , Animais , Humanos , Optogenética , Primatas
18.
Neuroimage ; 236: 118082, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882349

RESUMO

Recent methodological advances in MRI have enabled substantial growth in neuroimaging studies of non-human primates (NHPs), while open data-sharing through the PRIME-DE initiative has increased the availability of NHP MRI data and the need for robust multi-subject multi-center analyses. Streamlined acquisition and analysis protocols would accelerate and improve these efforts. However, consensus on minimal standards for data acquisition protocols and analysis pipelines for NHP imaging remains to be established, particularly for multi-center studies. Here, we draw parallels between NHP and human neuroimaging and provide minimal guidelines for harmonizing and standardizing data acquisition. We advocate robust translation of widely used open-access toolkits that are well established for analyzing human data. We also encourage the use of validated, automated pre-processing tools for analyzing NHP data sets. These guidelines aim to refine methodological and analytical strategies for small and large-scale NHP neuroimaging data. This will improve reproducibility of results, and accelerate the convergence between NHP and human neuroimaging strategies which will ultimately benefit fundamental and translational brain science.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Neuroimagem Funcional/métodos , Neuroimagem Funcional/normas , Macaca mulatta , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Reprodutibilidade dos Testes
19.
Neuron ; 109(8): 1381-1395.e7, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33667342

RESUMO

Perception improves by repeated practice with visual stimuli, a phenomenon known as visual perceptual learning (VPL). The interplay of attentional and neuromodulatory reward signals is hypothesized to cause these behavioral and associated neuronal changes, although VPL can occur without attention (i.e., task-irrelevant VPL). In addition, task-relevant VPL can be category-selective for simple attended oriented stimuli. Yet, it is unclear whether category-selective task-irrelevant VPL occurs and which brain centers mediate underlying forms of adult cortical plasticity. Here, we show that pairing subliminal complex visual stimuli (faces and bodies) with electrical microstimulation of the ventral tegmental area (VTA-EM) causes category-selective task-irrelevant VPL. These perceptual improvements are accompanied by fMRI signal changes in early and late visual and frontal areas, as well as the cerebellum, hippocampus, claustrum, and putamen. In conclusion, Pavlovian pairing of unattended complex stimuli with VTA-EM causes category-selective learning accompanied by changes of cortical and subcortical neural representations in macaques.


Assuntos
Atenção/fisiologia , Aprendizagem/fisiologia , Área Tegmentar Ventral/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Estimulação Elétrica , Macaca , Imageamento por Ressonância Magnética , Plasticidade Neuronal/fisiologia , Estimulação Luminosa , Área Tegmentar Ventral/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem
20.
Cereb Cortex ; 31(6): 2913-2931, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33558867

RESUMO

To understand the connectome of the axonal arborizations of dopaminergic midbrain neurons, we investigated the anterograde spread of highly sensitive viral tracers injected into the ventral tegmental area (VTA) and adjacent areas in 3 macaques. In 2 monkeys, injections were centered on the lateral VTA with some spread into the substantia nigra, while in one animal the injection targeted the medial VTA with partial spread into the ventro-medial thalamus. Double-labeling with antibodies against transduced fluorescent proteins (FPs) and tyrosine hydroxylase indicated that substantial portions of transduced midbrain neurons were dopaminergic. Interestingly, cortical terminals were found either homogeneously in molecular layer I, or more heterogeneously, sometimes forming patches, in the deeper laminae II-VI. In the animals with injections in lateral VTA, terminals were most dense in somatomotor cortex and the striatum. In contrast, when the medial VTA was transduced, dense terminals were found in dorsal prefrontal and temporal cortices, while projections to striatum were sparse. In all monkeys, orbitofrontal and occipito-parietal cortex received strong and weak innervation, respectively. Thus, the dopaminergic ventral midbrain sends heterogeneous projections throughout the brain. Furthermore, our results suggest the existence of subgroups in meso-dopaminergic neurons depending on their location in the primate ventral midbrain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Neurônios Dopaminérgicos/fisiologia , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Animais , Feminino , Macaca fuscata , Imageamento por Ressonância Magnética/métodos , Mesencéfalo , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...